China Ratio 15 and 25 TXT (SMRY) Shaft Gear Reducer Inch Size Gearbox adjustable width shaft collar

Item Description

SMRY Reducer Specification
 
 
1 Twin Tapered Output Hub
A  tapered  bore   in   both   sides   of   the reducer’s output hub snugs up against a matching taper on the outer surface of the bushing. Bushing mounting screws pass via the bushing flange into a mounting collar  on  the  hub.  As  the  screws  are tightened,   the    bushing   moves    inward, gripping the driven machine’s input shaft tightly and evenly around every point on its circumference. It is  easy-on, easy-off. All the Output Bushing Bore accord to ANSI

2 PrecrisioHigh Qua  lity Gearing
C ompu ter D e s i g n He lical .Gears, Robust Alloy Materials for High Load Potential, Circumstance Carburized for long life, Ground Profile Crown tooth Profile, In
Conformance  with  ISO  1328-1997,  98%  Efficiency  for  Per  Stage,  Smooth  Quiet Operation with Several Teeth in Mesh.
3 Maximum Capability Housing Layout
Shut  Grain  Cast  Iron  Construction,  Excellent  Vibration  Dampening  &  Shock Resistance Features, Precision Bored and Dowelled to Ensure Precise In-Line Assembly.
four Strong Alloy Steel Shafts
Sturdy Alloy Metal, Hardened, Ground on Journals, Gear Seatings and Extensions, for Maximum Load and Maximum Torsional Loads. Generous Measurement Shaft
Keys for Shock Loading .
Use adapter for mount the torque arm, increase the strength of the gear case, the torque arm easy-on and easy-off and trustworthiness, controls position of standard torque arm mounting within recommended limits.
six BackStops
Option Parts, anti-run back device, are available on all 15:1 and 25:1 ratio units.
seven Bearings and Oilseals
Bearings are all tapered roll bearings(Other than SMRY-2), have long time service time. Oilseals are Double Lipped Garter Spring Type, Guaranteeing Effective Oil
Sealing.
8 Torque Arm Assembly
For Easy Adjustment of the Belt.

 

size Nominal ratio 15:one Nominal ratio 25:1 weight
lbs
 
Actual Ratio Maximum Enter  rpm Maximum Ouput  rpm Actual Ratio Maximum Input  rpm Optimum Ouput  rpm
SMRY-2 14.04 1974 a hundred and forty 23.37 1994 85 fifty eight
SMRY-three fourteen.87 2083 a hundred and forty 24.75 2100 eighty five 98
SMRY-4 15.13 2118 a hundred and forty 24.38 2072 85 139
SMRY-5 fifteen.4 1925 125 25.fifty six 2044 eighty 207
SMRY-six fifteen.34 1916 one hundred twenty five twenty five.14 2571 eighty 285
SMRY-seven 15.23 1827 120 24.84 1863 75 462
SMRY-eight 15.08 1809 a hundred and twenty 24.62 1847 75 633
SMRY-nine 15.twelve 1814 one hundred twenty 25.sixty six 1925 75 760

size SMRY-2, 3,4,5,6,7,8,9 , ratio 15:1 ,twenty five:1

 

 

Company Profile

l  The biggest producer and exporter of worm equipment reducers in Asia.

 

l  Established in 1976, we reworked from a county owned manufacturing unit to private 1 in 1996. HangZhou SINO-DEUTSCH Electricity TRANSMISSION Products CO.,LTD is our new title given that 2001.

 

l  We are the first company of reducers and gearboxes in China who was given export license considering that 12 months 1993.

 

l  “Fixedstar” manufacturer gearboxes and reducers are the very first proprietor of CHINA Prime Model and Most Famous Trade Mark for reducers.
 

1st to achieve ISO9001 and CE Certificate between all producers of gearboxes in China.

   

 

 

 As a specialist maker of worm gearbox and worm equipment reducers in China, we primarily produce reduction gearbox,aluminum circumstance worm gearboxes,arc equipment cylindrical worm gearboxes, worm equipment reducers, in line helical gearboxes, and cyclo generate reducers, and so on. These goods function rational structure, stable performance, and reputable quality, and so on. They are extensively utilised in electricity, mining, metallurgy, constructing materials, chemical, food, printing, ceramic, paper-making, tobacco, and other industries.

 

  

We have 600 staff in our factory, which addresses 70,000 square meters in HangZhou. We have been producing 2,five hundred models of reducers every day because 2012. We are proudly exporting 70% of our items to much more than 40 international locations all more than the phrase. Our clients come from Italy, Germany, Usa, Canada, Spain, Uk, Mexico, Brazil, Argentina, Turkey, Singapore and other major industrial nations around the world in the globe. thirty% of them are OEM created for direct makers of other products. 

  

 

 

We warmly welcome customers from other elements of the globe to pay a visit to us. Observing is believing. We are really confident that right after visiting our facility, you will have self-confidence on our merchandise. We have the newest automatic equipments and knowledgeable staff to make certain the steady good quality and big output. We have the most advanced technical and engineering group to help most demanding need on common and OEM merchandise.

 

 

Looking forward to meeting you in HangZhou, China.

US $198
/ Piece
|
1 Piece

(Min. Order)

###

Application: Industry
Hardness: Hardened
Type: Bevel Gear
Size: 2-9
Material: Cast Iron
Manipulate Way: Robotics

###

Customization:

###

size Nominal ratio 15:1 Nominal ratio 25:1 weight
lbs

 
Actual Ratio Maximum Input  rpm Maximum Ouput  rpm Actual Ratio Maximum Input  rpm Maximum Ouput  rpm
SMRY-2 14.04 1974 140 23.37 1994 85 58
SMRY-3 14.87 2083 140 24.75 2100 85 98
SMRY-4 15.13 2118 140 24.38 2072 85 139
SMRY-5 15.4 1925 125 25.56 2044 80 207
SMRY-6 15.34 1916 125 25.14 2010 80 285
SMRY-7 15.23 1827 120 24.84 1863 75 462
SMRY-8 15.08 1809 120 24.62 1847 75 633
SMRY-9 15.12 1814 120 25.66 1925 75 760
US $198
/ Piece
|
1 Piece

(Min. Order)

###

Application: Industry
Hardness: Hardened
Type: Bevel Gear
Size: 2-9
Material: Cast Iron
Manipulate Way: Robotics

###

Customization:

###

size Nominal ratio 15:1 Nominal ratio 25:1 weight
lbs

 
Actual Ratio Maximum Input  rpm Maximum Ouput  rpm Actual Ratio Maximum Input  rpm Maximum Ouput  rpm
SMRY-2 14.04 1974 140 23.37 1994 85 58
SMRY-3 14.87 2083 140 24.75 2100 85 98
SMRY-4 15.13 2118 140 24.38 2072 85 139
SMRY-5 15.4 1925 125 25.56 2044 80 207
SMRY-6 15.34 1916 125 25.14 2010 80 285
SMRY-7 15.23 1827 120 24.84 1863 75 462
SMRY-8 15.08 1809 120 24.62 1847 75 633
SMRY-9 15.12 1814 120 25.66 1925 75 760

Choosing a Shaft Collar

The shaft collar is a simple machine component used in a variety of power transmission applications. They are most often found on gearboxes and motors. Their simple design makes them an easy component to install and remove. Among other uses, shaft collars are used as bearing faces, mechanical stops, and locating components.
Shaft Collar

Clamp-style shaft collars

Clamp-style shaft collars fix many of the problems associated with set-screw collars. Available in two-piece and one-piece designs, these collars compress the shaft and lock into place. This allows for a uniform distribution of force on the shaft. Clamp-style shaft collars provide more holding power than set-screw collars, but they work best under consistent pressure. Clamp-style shaft collars also work better against negative forces, as they have a separate, un-tightened side.
Clamp-style shaft collars feature mounting holes in the outer diameter. Like clamp-style collars, mountable shaft collars can be installed on adjacent assemblies, but the mounting method does not affect holding power. Mountable shaft collars are commonly used in mounting sensor brackets. They may have rounded or flat outer diameters to accommodate the mounting process. Mountable shaft collars may also have tapped or flat holes to facilitate installation.
Quick-clamp shaft collars have the same functionality as clamp-style collars, but feature a removable lever. They are typically quick-to-install and do not mar the shaft. Quick-clamping collars are especially beneficial in applications that require light-duty torque. They also make for quick and easy adjustments.
Heavy-duty shaft collars feature larger outer diameters, a wider face, and a larger screw. These collars are ideally suited for d-shafting and can offer greater holding power than set-screw collars. These collars are typically manufactured from high-strength 2024 aluminum.
Clamp-style shaft collars can be used in many different applications. They can be used for a variety of applications, including bearings, and are especially suited for rotary machines. However, there are some drawbacks. While they may not be as flexible as set-screw collars, they can still perform well under constant loads. One drawback is that they tend to loosen under shocks and reduce the holding power of clamping hardware.
Another advantage of clamp-style shaft collars is that they do not mar the shaft and allow for easy positioning adjustments. Furthermore, they are easier to install and offer greater holding power than set-screw collars. These collars are made from high-quality materials with tight tolerances and are available in different bore sizes.
Clamp-style shaft collars are the most common type of shaft collars. They can be two-piece or one-piece. Among these, two-piece collars are the most convenient option. One-piece collars are hard to move, and two-piece collars have a hinge on one side and a clamp-style collar on the other side.
The materials used in Clamp-style shaft collars play a crucial role in their overall performance. They should be strong, corrosion-resistant, and have good holding power. They should also be able to withstand high temperatures. The most common materials used for shaft collars are steel and aluminum. Some types are made from stainless steel, while others are made from engineered plastic.
Clamp-style shaft collars can come in two pieces or single-piece designs. The smaller one-piece collars usually have a back-cut opposite the clamp cut, which reduces the cross-sectional area at the hinge point. This reduces the amount of force required to clamp the collar, which makes it easier to use stronger screws.
Shaft Collar

Aluminum, carbon steel, and stainless steel shaft collars

When choosing a shaft collar, you should consider the material it is made of. You can purchase collars made of carbon steel, aluminum, or stainless steel. Each of these materials has its benefits and disadvantages. Steel is more durable than aluminum and tends to provide better holding power. Aluminum, on the other hand, is lighter and has a favorable strength-to-weight ratio. The material you choose should depend on your specific needs, such as corrosion resistance or weight.
Mountable shaft collars are used to mount sensors, fixtures, and other assemblies. These collars are available with outer diameter holes, flats, or quick-release designs. The material used to make these collars varies, with standard models made of 1215 lead-free steel and 2024 aluminum.
When choosing shaft collars, take into account the material and surface treatment. Different materials offer different properties, which will determine the performance of the collar. In addition to material, each shaft collar comes with a different holding power. Holding power is a key factor in choosing a shaft collar because it determines the amount of load it can withstand without slipping. The holding power depends on the screw size, the bore size, and the bulk of the collar.
Aluminum, carbon steel, and stainless steel shaft-collars can come in various styles. CZPT, for example, offers standard shaft collars in hex and d-bore profiles. Hex collars provide extra holding power and are better than set screws. Additionally, they do not mar the shaft and provide a better grip.
Another type of shaft collar is the quick-clamp shaft collar. These features allow users to install and remove them with ease. The quick-clamp collar has a handle that allows the user to quickly adjust it. While these shaft collars are designed for light duty applications, they are not recommended for heavy-duty or high-RPM applications.
Shaft collars are simple yet versatile components. They are used for various applications, including mechanical stops, stroke limiters, and retainers. They can also be used to align and space other components. Shaft collars are widely used in gearbox assemblies, flagpoles, and medical instruments, among others.
Two-piece shaft collars offer the same benefits of one-piece shaft collars, but offer additional convenience and versatility. They are easier to install and disassemble, reducing installation and labor costs. They also offer superior holding power. They also feature a threaded bore that acts as a positive mechanical stop when the shaft is rotated.
Shaft Collar

Over-torqueing shaft collars

Shaft collars are often used to secure components on shafts or other surfaces. They also provide an easy way to adjust the positioning of motor assembly components. Many different types of shaft collars are available to meet the specific needs of different applications. These include round, hexagonal, square, and D-bore collars.
The design of shaft collars must account for the load they will support. Some collars are made of metals, while others are made of plastic or composite materials. Typically, shaft collars are made of steel, but can also be made from aluminum or alloyed steel. Some are coated with zinc.
Shaft collars are available in one-piece and two-piece designs. Single-piece collars are designed to fit securely around a shaft, while double-piece collars allow for greater clamping force. These collars can be assembled anywhere along the shaft and can be installed between two pieces. They are available in different bore configurations and can be customized to meet your specific application.
Clamp style collars are easy to install and disassemble, and have a larger holding force than one-piece collars. These collars are also more shock-load resistant. They also don’t mar shaft surfaces, unlike setscrews. They can also be easily adjusted without damaging the shaft. Another style of collar is the quick-clamping style. This type of collar doesn’t mar the shaft, and is easily installed and removed without tools. These are best for light-duty applications.
When choosing a shaft collar, you should consider the tolerance of the shaft. It is important to select a shaft with a tight tolerance. The shaft’s hardness should not be greater than Rockwell C35. A wide tolerance will affect the holding power of the collar. If the shaft is undersized, you may need to use a screwdrive to slide the collar on the shaft.
Shaft collars are a versatile component with many different applications. They can secure industrial railings or serve as positioning devices in medical equipment. They are also widely used in automation machinery. They are used to protect cylinders and actuators and to ensure alignment between components. For this reason, they are very versatile and adaptable.
Clamp-style collars work well under constant loads, but they may need assistance during impact loads. Shock loads can be difficult to avoid, especially if the mass is small. Clamp-style collars with an undercut in the shaft help to resist the impact of shock. Moreover, they offer positive stops in both axial directions.
Clamp-style shaft collars are a good alternative for set-screw collars. They are easy to install and prevent shaft damage. They also come with an added advantage of being easy to adjust. Clamp-style shaft collars have double the holding power of set-screw collars.
In addition to holding components, shaft collars can also function as spacers and limit shaft movement. They are essential for many applications. They are commonly used in motors and gearboxes to ensure correct positioning for power transmission. They are also used to control shaft movement in reciprocating applications.
China Ratio 15 and 25 TXT (SMRY) Shaft Gear Reducer Inch Size Gearbox     adjustable width shaft collarChina Ratio 15 and 25 TXT (SMRY) Shaft Gear Reducer Inch Size Gearbox     adjustable width shaft collar
editor by czh 2023-01-12